chemtools.conceptual.base.BaseLocalTool¶
-
class
chemtools.conceptual.base.
BaseLocalTool
(n0, n_max=None, global_softness=None)[source]¶ Base class of local conceptual DFT reactivity descriptors.
Initialize class.
Parameters: - n0 (float) – Reference number of electrons, i.e. \(N_0\).
- n_max (float, optional) – Maximum number of electrons that system can accept, i.e. \(N_{\text{max}}\).
See
BaseGlobalTool.n_max
. - global_softness (float, optional) – Global softness. See
BaseGlobalTool.softness
.
-
n0
¶ Reference number of electrons, i.e. \(N_0\).
-
n_max
¶ Maximum number of electrons that the system accepts, i.e. \(N_{\text{max}}\).
-
global_softness
¶ Global softness.
-
density
(n_elec)[source]¶ Evaluate density model \(\rho_N(\mathbf{r})\) at the \(N_{\text{elec}}\).
The functional derivative of energy model \(E(N)\) w.r.t. external potential at fixed number of electrons, evaluated at the given number of electrons \(N_{\text{elec}}\), i.e.
\[\left.\rho_N(\mathbf{r}) = {\left(\frac{\delta E(N)}{\delta v(\mathbf{r})}\right)_N} \right|_{N = N_{\text{elec}}}\]Parameters: n_elec (float) – Number of electrons, \(N_{\text{elec}}\).
-
density_derivative
(n_elec, order=1)[source]¶ Evaluate n-th derivative of density w.r.t. number of electrons at \(N_{\text{elec}}\).
The n-th order derivative of density model \(\rho_N(\mathbf{r})\) w.r.t. the number of electrons, at fixed external potential, evaluated at the given number of electrons \(N_{\text{elec}}\) is:
\[\left. \left(\frac{\partial^n \rho_N(\mathbf{r})}{\partial N^n} \right)_{v(\mathbf{r})}\right|_{N = N_{\text{elec}}}\]Parameters: - n_elec (float) – Number of electrons, \(N_{\text{elec}}\).
- order (int, optional) – The order of derivative denoted by \(n\) in the formula.
Note
For \(N_{\text{elec}} = N_0\) the first, second and higher order density derivatives correspond to the
fukui function
,dual descriptor
andhyper fukui function
, respectively.
-
fukui_function
¶ Fukui function of \(N_0\)-electron system.
This is defined as the 1st derivative of density model \(\rho_N(\mathbf{r})\) w.r.t. the number of electrons, at fixed external potential, evaluated at \(N_0\), or the functional derivative of chemical potential w.r.t. external potential, at fixed number of electrons, i.e.
\[f_{N_0}(\mathbf{r}) = {\left( \frac{\delta \mu}{\delta v(\mathbf{r})} \right)_N} = \left. \left(\frac{\partial \rho_N(\mathbf{r})}{\partial N} \right)_{v(\mathbf{r})}\right|_{N = N_0}\]where \(\mu\) is the
chemical potential
.
-
dual_descriptor
¶ Dual descriptor of \(N_0\)-electron system.
This is defined as the 2nd derivative of density model \(\rho_N(\mathbf{r})\) w.r.t. the number of electrons, at fixed external potential, evaluated at \(N_0\), or the functional derivative of chemical hardness w.r.t. external potential, at fixed number of electrons, i.e.
\[\Delta f_{N_0}(\mathbf{r}) = {\left( \frac{\delta \eta}{\delta v(\mathbf{r})} \right)_N} = \left. \left(\frac{\partial^2 \rho_N(\mathbf{r})}{\partial N^2} \right)_{v(\mathbf{r})}\right|_{N = N_0}\]where \(\eta\) is the
chemical hardness
.
-
softness
¶ Chemical softness of \(N_0\)-electron system.
\[s_{N_0}\left(\mathbf{r}\right) = S \cdot f_{N_0}\left(\mathbf{r}\right)\]where \(S\) is the
global softness
, and \(f_{N_0}\left(\mathbf{r}\right)\) isfukui function
.
-
hyper_softness
¶ Chemical hyper-softness of \(N_0\)-electron system.
\[s_{N_0}^{(2)}\left(\mathbf{r}\right) = S^2 \cdot \Delta f_{N_0}\left(\mathbf{r}\right)\]where \(S\) is the
global softness
, and \(\Delta f_{N_0}\left(\mathbf{r}\right)\) is thedual descriptor
.