chemtools.conceptual.cubic.CubicGlobalTool¶
- 
class chemtools.conceptual.cubic.CubicGlobalTool(dict_energy, omega=0.5)[source]¶
- Class of global conceptual DFT reactivity descriptors based on the cubic energy model. - The energy is approximated as a quadratic function of the number of electrons, \[E(N) = a + b N + c N^2 + d N^3\]- Given \(E(N_0 - 1)\), \(E(N_0)\) and \(E(N_0 + 1)\) values, the unknown parameters of the energy model are obtained by interpolation. - First, second and higher order derivatives of the cubic energy model with respect to the number of electrons at fixed external potential are given by: \[\begin{split}\left(\frac{\partial E}{\partial N}\right)_{v(\mathbf{r})} &= b + 2 c N + 3 d N^2\\ \left(\frac{\partial^2 E}{\partial N^2}\right)_{v(\mathbf{r})} &= 2 c + 6 d N\\ \left(\frac{\partial^3 E}{\partial N^3}\right)_{v(\mathbf{r})} &= 6 d \\ \left(\frac{\partial^n E}{\partial N^n}\right)_{v(\mathbf{r})} &= 0 \quad \text{for} \quad n \geq 3\end{split}\]- Initialize cubic energy model to compute global reactivity descriptors. - Parameters: - dict_energy (dict) – Dictionary of number of electrons (keys) and corresponding energy (values). This model expects three energy values corresponding to three consecutive number of electrons differing by one, i.e. \(\{(N_0 - 1): E(N_0 - 1), N_0: E(N_0), (N_0 + 1): E(N_0 + 1)\}\). The \(N_0\) value is considered as the reference number of electrons.
- omega (float) – Value of omega parameter in the energy model.
 - 
omega¶
- Parameter \(\omega\) in the energy model. 
 - 
params¶
- Parameters \(a\), \(b\), \(c\), and \(d\) of energy model. 
 - 
energy(n_elec)[source]¶
- Return the energy model \(E(N)\) evaluated for the specified number of electrons. - Parameters: - n_elec (float) – Number of electrons, \(N_{\text{elec}}\). 
 - 
energy_derivative(n_elec, order=1)[source]¶
- Return the \(n^{\text{th}}\)-order derivative of energy w.r.t. the number of electrons. - This returns the \(n^{\text{th}}\)-order derivative of energy model \(E(N)\) w.r.t. to the number of electrons, at fixed chemical potential, evaluated for the specified number of electrons. \[\left. \left(\frac{\partial^n E}{\partial N^n} \right)_{v(\mathbf{r})}\right|_{N = N_{\text{elec}}}\]- Parameters: - n_elec (float) – Number of electrons, \(N_{\text{elec}}\).
- order (int, default=1) – The order of derivative denoted by \(n\) in the formula.
 - Note - For \(N_{\text{elec}} = N_0\) the first, second and higher order derivatives are equal to the - BaseGlobalTool.chemical_potential,- BaseGlobalTool.chemical_hardnessand- BaseGlobalTool.hyper_hardness, respectively.
 - 
chemical_hardness¶
- Chemical hardness of the \(N_0\)-electron system. - This chemical hardness is defined as the second derivative of the energy model w.r.t. the number of electrons, at fixed external potential, evaluated at \(N_0\). \[\eta = \left. \left(\frac{\partial^2 E}{\partial N^2} \right)_{v(\mathbf{r})} \right|_{N = N_0}\]
 - 
chemical_potential¶
- Chemical potential of the \(N_0\)-electron system. - The chemical potential is defined as the first derivative of the energy model w.r.t. the number of electrons, at fixed external potential, evaluated at \(N_0\), \[\mu = \left. \left(\frac{\partial E}{\partial N} \right)_{v(\mathbf{r})} \right|_{N = N_0}\]
 - 
convert_mu_to_n(mu, guess=None)¶
- Return the number of electrons \(N\) matching the given chemical potential \(\mu\). - Chemical potential is a function of the number of electrons, \(\mu(N)\), as it is the first derivative of energy model \(E(N)\) with respect to the number of electrons at fixed external potential, \[\mu(N) = \left(\frac{\partial E(N)}{\partial N}\right)_{v(\mathbf{r})}\]- Here we solve for \(N\) which results in the specified \(\mu\) according to the equation above, i.e. \(N(\mu) = \mu^{-1}(N)\), using - scipy.optimize.newton.- Parameters: - mu (float) – Chemical potential, \(\mu\).
- guess (float, default=None) – Initial guess used for solving for \(N\).
If None, the reference number of electrons \(N_0\) is used as an initial guess.
 
 - 
ea¶
- The same as - electron_affinity.
 - 
electrofugality¶
- Electrofugalityof the \(N_0\)-electron system. \[\nu_{\text{electrofugality}} = \text{sgn}\left(N_{\text{max}} - N_0 + 1\right) \times \left(E(N_0 - 1) - E(N_{\text{max}})\right)\]
 - 
electron_affinity¶
- Electron affinity (EA) of the \(N_0\)-electron system. \[EA = E\left(N_0\right) - E\left(N_0 + 1\right)\]
 - 
electronegativity¶
- Mulliken electronegativity defined as negative - chemical_potential.\[\chi_{\text{Mulliken}} = - \mu\]
 - 
electrophilicity¶
- Electrophilicity of the \(N_0\)-electron system. \[\omega_{\text{electrophilicity}} = \text{sgn}\left(N_{\text{max}} - N_0\right) \times \left(E(N_0) - E(N_{\text{max}})\right)\]
 - 
eta¶
- The same as - chemical_hardness.
 - 
grand_potential(n_elec)¶
- Return the grand potential model evaluated for the specified number of electrons. \[\begin{split}\Omega [\mu(N_{\text{elec}}); v(\mathbf{r})] &= E(N_{\text{elec}}) - \mu(N_{\text{elec}}) \times N_{\text{elec}} \\ &= E(N_{\text{elec}}) - \left.\left(\frac{\partial E(N)}{\partial N} \right)_{v(\mathbf{r})}\right|_{N = N_{\text{elec}}} \times N_{\text{elec}}\end{split}\]- Parameters: - n_elec (float) – Number of electrons, \(N_{\text{elec}}\). 
 - 
grand_potential_derivative(n_elec, order=1)¶
- Evaluate the \(n^{\text{th}}\)-order derivative of grand potential at the given n_elec. - This returns the \(n^{\text{th}}\)-order derivative of grand potential model w.r.t. to the chemical potential, at fixed external potential, evaluated for the specified number of electrons \(N_{\text{elec}}\). - That is, \[\left. \left(\frac{\partial^n \Omega}{\partial \mu^n} \right)_{v(\mathbf{r})} \right|_{N = N_{\text{elec}}} = \left. \left(\frac{\partial^{n-1}}{\partial \mu^{n-1}} \frac{\partial \Omega}{\partial \mu} \right)_{v(\mathbf{r})} \right|_{N = N_{\text{elec}}} = - \left. \left(\frac{\partial^{n-1} N}{\partial \mu^{n-1}} \right)_{v(\mathbf{r})} \right|_{N = N_{\text{elec}}} \quad n = 1, 2, \dots\]- These derivatives can be computed using the derivative of energy model w.r.t. number of electrons, at fixed external potential, evaluated at \(N_{\text{elec}}\). More specifically, \[\begin{split}\left. \left(\frac{\partial \Omega}{\partial \mu} \right)_{v(\mathbf{r})} \right|_{N = N_{\text{elec}}} &= - N_{\text{elec}} \\ \left. \left(\frac{\partial^2 \Omega}{\partial \mu^2} \right)_{v(\mathbf{r})} \right|_{N = N_{\text{elec}}} &= -\frac{1}{\eta^{(1)}}\end{split}\]- where \(\eta^{(n)}\) denotes the \((n+1)^{\text{th}}\)-order derivative of energy w.r.t. number of electrons evaluated at \(N_{\text{elec}}\), i.e. \[\eta^{(n)} = \left. \left(\frac{\partial^{n+1} E}{\partial N^{n+1}} \right)_{v(\mathbf{r})} \right|_{N = N_{\text{elec}}} \qquad n = 1, 2, \dots\]- To compute higher-order derivatives, Faa di Bruno formula which generalizes the chain rule to higher derivatives can be used. i.e. for \(n \geq 2\), \[\left. \left(\frac{\partial^n \Omega}{\partial \mu^n} \right)_{v(\mathbf{r})} \right|_{N = N_{\text{elec}}} = \frac{-\displaystyle\sum_{k=1}^{n-2} \left.\left(\frac{\partial^k \Omega}{\partial \mu^k} \right)_{v(\mathbf{r})} \right|_{N = N_{\text{elec}}} \cdot B_{n-1,k} \left(\eta^{(1)}, \eta^{(2)}, \dots, \eta^{(n-k)} \right)} {B_{n-1,n-1} \left(\eta^{(1)}\right)}\]- where \(B_{n-1,k} \left(x_1, x_2, \dots, x_{n-k}\right)\) denotes the Bell polynomials. - Parameters: - n_elec (float) – Number of electrons, \(N_{\text{elec}}\).
- order (int, default=1) – The order of derivative denoted by \(n\) in the formula.
 
 - 
grand_potential_mu(mu)¶
- Evaluate the grand potential model for the specified chemical potential \(\mu\). - To evaluate grand potential model, first the number of electrons corresponding to the specified \(\mu\) is found, i.e. \(N(\mu)=\mu^{-1}(N)\), then the grand potential in computed by, \[\Omega [\mu(N); v(\mathbf{r})] = E(N(\mu)) - \mu \times N(\mu)\]- Parameters: - mu (float) – Chemical potential \(\mu\). 
 - 
grand_potential_mu_derivative(mu, order=1)¶
- Evaluate the \(n^{\text{th}}\)-order derivative of grand potential at the given mu. - This returns the \(n^{\text{th}}\)-order derivative of grand potential model w.r.t. chemical potential, at fixed external potential, evaluated for the specified chemical potential \(\mu\). - That is, \[\left. \left(\frac{\partial^n \Omega}{\partial \mu^n} \right)_{v(\mathbf{r})} \right|_{N = N\left(\mu\right)} = \left. \left(\frac{\partial^{n-1}}{\partial \mu^{n-1}} \frac{\partial \Omega}{\partial \mu} \right)_{v(\mathbf{r})} \right|_{N = N\left(\mu\right)} = - \left. \left(\frac{\partial^{n-1} N}{\partial \mu^{n-1}} \right)_{v(\mathbf{r})} \right|_{N = N\left(\mu\right)} \quad n = 1, 2, \dots\]- To evaluate this expression, the number of electrons corresponding to the specified \(\mu\) should is found, i.e. \(N(\mu)=\mu^{-1}(N)\). - Parameters: - mu (float) – Chemical potential, \(\mu\).
- order (int, default=1) – The order of derivative denoted by \(n\) in the formula.
 
 - 
hyper_hardness(order=2)¶
- Return the \(n^{\text{th}}\)-order hyper-hardness of the \(N_0\)-electron system. - The \(n^{\text{th}}\)-order hyper-hardness is defined as the \((n+1)^{\text{th}}\) -order derivative, where \(n \geq 2\), of the energy model w.r.t the number of electrons, at fixed external potential, evaluated at \(N_0\). \[\eta^{(n)} = \left. \left(\frac{\partial^{n+1} E}{\partial N^{n+1}} \right)_{v(\mathbf{r})} \right|_{N = N_0} \quad \text{for} \quad n \geq 2\]- Parameters: - order (int, default=2) – The order of hyper-hardness denoted by \(n \geq 2\) in the formula. 
 - 
hyper_softness(order)¶
- Return the \(n^{\text{th}}\)-order hyper-softness of the \(N_0\)-electron system. - The \(n^{\text{th}}\)-order hyper softness is defined as the \((n+1)^{\text{th}}\) -order derivative, where \(n \geq 2\), of the grand potential model w.r.t the number of electrons at fixed external potential evaluated at \(N_0\). \[S^{(n)} = - \left. \left(\frac{\partial^{n+1} \Omega}{\partial \mu^{n+1}} \right)_{v(\mathbf{r})} \right|_{N = N_0} \quad \text{for} \quad n \geq 2\]- Parameters: - order (int, default=2) – The order of hyper-hardness denoted by \(n \geq 2\) in the formula. 
 - 
ionization_potential¶
- Ionization potential (IP) of the \(N_0\)-electron system. \[IP = E\left(N_0 - 1\right) - E\left(N_0\right)\]
 - 
ip¶
- The same as - ionization_potential.
 - 
mu¶
- The same as - chemical_potential.
 - 
n0¶
- Reference number of electrons, i.e. \(N_0\). 
 - 
n_max¶
- Maximum number of electrons that the system can accept. \[N_{\text{max}} = \underbrace {\min }_N E(N)\]
 - 
nucleofugality¶
- Nucleofugality of the \(N_0\)-electron system. \[\nu_{\text{nucleofugality}} = \text{sgn}\left(N_0 + 1 - N_{\text{max}}\right) \times \left(E(N_0 + 1) - E(N_{\text{max}})\right)\]
 - 
softness¶
- Chemical softness of the \(N_0\)-electron system. - The chemical softness is defined as the second derivative of the grand potential model w.r.t the number of electrons, at fixed external potential, evaluated at \(N_0\). This is equal to the inverse chemical hardness. \[S = - \left. \left(\frac{\partial^2 \Omega}{\partial \mu^2} \right)_{v(\mathbf{r})}\right|_{N = N_0} = \frac{1}{\eta}\]