chemtools.conceptual.quadratic.QuadraticCondensedTool¶
-
class
chemtools.conceptual.quadratic.
QuadraticCondensedTool
(dict_population, n_max=None, global_softness=None)[source]¶ Condensed conceptual DFT reactivity descriptors class based on the quadratic energy model.
This class contains the atom-condensed equivalent of
QuadraticLocalTool
reactivity indicators.Initialize quadratic population model to compute condensed reactivity descriptors.
Parameters: - dict_population (dict) – Dictionary of number of electrons (keys) and corresponding atomic populations array (values). This model expects three energy values corresponding to three consecutive number of electrons differing by one, i.e. \(\{(N_0 - 1): {N_A \left(N_0 - 1\right)}, N_0: {N_A \left(N_0\right)}, (N_0 + 1): {N_A \left(N_0 + 1\right)}\). The \(N_0\) value is considered as the reference number of electrons.
- n_max (float, optional) – Maximum number of electrons that system can accept, i.e. \(N_{\text{max}}\).
See
BaseGlobalTool.n_max
. - global_softness (float, optional) – Global softness. See
BaseGlobalTool.softness
.
-
population
(n_elec)[source]¶ Evaluate atomic populations at the given number of electrons \(N_{\text{elec}}\).
- ..math::
- N_A = Z_A - int w_A(mathbf{r}) rho_N(mathbf{r}) dmathbf{r}
where \(w_A(\mathbf{r})\) is the atomic weight of atom \(A\) at point mathbf{r}.
Parameters: n_elec (float) – Number of electrons, \(N_{\text{elec}}\).
-
population_derivative
(n_elec, order=1)[source]¶ Evaluate n-th derivative of atomic populations w.r.t. number of electrons.
The n-th order derivative of atomic populations \(\rho_N(\mathbf{r})\) w.r.t. the number of electrons, at fixed chemical potential, evaluated at the given number of electrons \(N_{\text{elec}}\) is:
\[\left. \left(\frac{\partial^n \rho_N(\mathbf{r})}{\partial N^n} \right)_{v(\mathbf{r})}\right|_{N = N_{\text{elec}}}\]Parameters: - n_elec (float) – Number of electrons, \(N_{\text{elec}}\).
- order (int, optional) – The order of derivative denoted by \(n\) in the formula.
Note
For \(N_{\text{elec}} = N_0\) the first, second and higher order density derivatives correspond to the condensed
fukui function
,dual descriptor
andhyper fukui function
, respectively.
-
dual_descriptor
¶ Atomic dual descriptor of \(N_0\)-electron system.
This is defined as the 2nd derivative of density model \(\rho_N(\mathbf{r})\) w.r.t. the number of electrons, at fixed external potential, evaluated at \(N_0\), or the functional derivative of chemical hardness w.r.t. external potential, at fixed number of electrons, i.e.
\[\Delta f_{N_0}(\mathbf{r}) = {\left( \frac{\delta \eta}{\delta v(\mathbf{r})} \right)_N} = \left. \left(\frac{\partial^2 \rho_N(\mathbf{r})}{\partial N^2} \right)_{v(\mathbf{r})}\right|_{N = N_0}\]where \(\eta\) is the
chemical hardness
.
-
fukui_function
¶ Atomic Fukui function of \(N_0\)-electron system.
This is defined as the 1st derivative of density model \(\rho_N(\mathbf{r})\) w.r.t. the number of electrons, at fixed external potential, evaluated at \(N_0\), or the functional derivative of chemical potential w.r.t. external potential, at fixed number of electrons, i.e.
\[f_{N_0}(\mathbf{r}) = {\left( \frac{\delta \mu}{\delta v(\mathbf{r})} \right)_N} = \left. \left(\frac{\partial \rho_N(\mathbf{r})}{\partial N} \right)_{v(\mathbf{r})}\right|_{N = N_0}\]where \(\mu\) is the
chemical potential
.
-
global_softness
¶ Global softness.
-
hyper_softness
¶ Chemical hyper-softness of \(N_0\)-electron system, \(s_N^{(2)}(\mathbf{r})\).
\[s_N^{(2)}\left(\mathbf{r}\right) = S^2 \cdot \Delta f_N\left(\mathbf{r}\right)\]where \(S\) is the
global softness
and \(\Delta f_N\) is thedual descriptor
.
-
n_max
¶ Maximum number of electrons that the system accepts, i.e. \(N_{\text{max}}\).
-
n_ref
¶ Reference number of electrons, i.e. \(N_0\).
-
softness
¶ Atomic chemical softness of \(N_0\)-electron system.
\[s_A\left(N\right) = S \cdot f_A\left(\mathbf{r}\right)\]where \(S\) is the
global softness
.