chemtools.denstools.densbased.DensGradLapKedTool¶
-
class
chemtools.denstools.densbased.
DensGradLapKedTool
(dens, grad, lap, ked)[source]¶ Local descriptive tools based on density, gradient, Laplacian & kinetic energy density.
Initialize class.
Parameters: - dens (np.ndarray) – Electron density evaluated on a set of grid points, \(\rho(\mathbf{r})\).
- grad (np.ndarray) – Gradient vector of electron density evaluated on a set of grid points, \(\nabla \rho(\mathbf{r})\).
- lap (np.ndarray) – Laplacian of electron density evaluated on a set of grid points, \(\nabla^2 \rho(\mathbf{r})\).
- ked (np.ndarray) – Positive-definite or Lagrangian kinetic energy density evaluated on a set of grid points; \(\tau_\text{PD} (\mathbf{r})\) or \(G(\mathbf{r})\).
-
ked_positive_definite
¶ Positive definite or Lagrangian kinetic energy density, \(G(\mathbf{r})\).
\[\tau_\text{PD} \left(\mathbf{r}\right) = \tfrac{1}{2} \sum_i^N n_i \rvert \nabla \phi_i \left(\mathbf{r}\right) \lvert^2\]
-
ked_hamiltonian
¶ Hamiltonian kinetic energy density denoted by \(K(\mathbf{r})\).
\[\tau_\text{ham} \left(\mathbf{r}\right) = \tau_\text{PD} \left(\mathbf{r}\right) - \tfrac{1}{4} \nabla^2 \rho\left(\mathbf{r}\right)\]This is a special case of
ked_general()
with \(a=0\).
-
ked_general
(a)[source]¶ Compute general(ish) kinetic energy density.
\[\tau_\text{G} \left(\mathbf{r}, \alpha\right) = \tau_\text{PD} \left(\mathbf{r}\right) + \tfrac{1}{4} (a - 1) \nabla^2 \rho\left(\mathbf{r}\right)\]Parameters: a (float) – Value of parameter \(a\).
-
density
¶ Electron density \(\rho\left(\mathbf{r}\right)\).
-
gradient
¶ Gradient of electron density \(\nabla \rho\left(\mathbf{r}\right)\).
This is the first-order partial derivatives of electron density w.r.t. coordinate \(\mathbf{r} = \left(x\mathbf{i}, y\mathbf{j}, z\mathbf{k}\right)\),
\[\nabla\rho\left(\mathbf{r}\right) = \left(\frac{\partial}{\partial x}\mathbf{i}, \frac{\partial}{\partial y}\mathbf{j}, \frac{\partial}{\partial z}\mathbf{k}\right) \rho\left(\mathbf{r}\right)\]
-
gradient_norm
¶ Norm of the gradient of electron density.
\[\lvert \nabla \rho\left(\mathbf{r}\right) \rvert = \sqrt{ \left(\frac{\partial\rho\left(\mathbf{r}\right)}{\partial x}\right)^2 + \left(\frac{\partial\rho\left(\mathbf{r}\right)}{\partial y}\right)^2 + \left(\frac{\partial\rho\left(\mathbf{r}\right)}{\partial z}\right)^2 }\]
-
ked_gradient_expansion
¶ Gradient expansion approximation of kinetic energy density.
\[\tau_\text{GEA} \left(\mathbf{r}\right) = \tau_\text{TF} \left(\mathbf{r}\right) + \tfrac{1}{9} \tau_\text{W} \left(\mathbf{r}\right) + \tfrac{1}{6} \nabla^2 \rho\left(\mathbf{r}\right)\]This is a special case of
ked_gradient_expansion_general()
with \(a=\tfrac{1}{9}\) and \(b=\tfrac{1}{6}\).
-
ked_gradient_expansion_empirical
¶ Empirical gradient expansion approximation of kinetic energy density.
\[\tau_\text{empGEA} \left(\mathbf{r}\right) = \tau_\text{TF} \left(\mathbf{r}\right) + \tfrac{1}{5} \tau_\text{W} \left(\mathbf{r}\right) + \tfrac{1}{6} \nabla^2 \rho\left(\mathbf{r}\right)\]This is a special case of
ked_gradient_expansion_general()
with \(a=\tfrac{1}{5}\) and \(b=\tfrac{1}{6}\).
-
ked_gradient_expansion_general
(a, b)¶ General gradient expansion approximation of kinetic energy density.
\[\tau_\text{genGEA} \left(\mathbf{r}\right) = \tau_\text{TF} \left(\mathbf{r}\right) + a \, \tau_\text{W} \left(\mathbf{r}\right) + b \, \nabla^2 \rho\left(\mathbf{r}\right)\]Parameters: - a (float) – Value of parameter \(a\).
- b (float) – Value of parameter \(b\).
-
ked_thomas_fermi
¶ Thomas-Fermi kinetic energy density.
\[\tau_\text{TF} \left(\mathbf{r}\right) = \tfrac{3}{10} \left(6 \pi^2 \right)^{2/3} \left(\frac{\rho\left(\mathbf{r}\right)}{2}\right)^{5/3}\]
-
ked_weizsacker
¶ Weizsacker kinetic energy density.
\[\tau_\text{W} \left(\mathbf{r}\right) = \tfrac{1}{8} \frac{\lvert \nabla\rho\left(\mathbf{r}\right) \rvert^2}{\rho\left(\mathbf{r}\right)}\]
-
laplacian
¶ Laplacian of electron density \(\nabla ^2 \rho\left(\mathbf{r}\right)\).
This is defined as the trace of Hessian matrix of electron density which is equal to the sum of its \(\left(\lambda_1, \lambda_2, \lambda_3\right)\) eigen-values:
\[\nabla^2 \rho\left(\mathbf{r}\right) = \nabla\cdot\nabla\rho\left(\mathbf{r}\right) = \frac{\partial^2\rho\left(\mathbf{r}\right)}{\partial x^2} + \frac{\partial^2\rho\left(\mathbf{r}\right)}{\partial y^2} + \frac{\partial^2\rho\left(\mathbf{r}\right)}{\partial z^2} = \lambda_1 + \lambda_2 + \lambda_3\]
-
reduced_density_gradient
¶ Reduced density gradient.
\[s\left(\mathbf{r}\right) = \frac{1}{2\left(3\pi ^2 \right)^{1/3}} \frac{\lvert \nabla\rho\left(\mathbf{r}\right) \rvert}{\rho\left(\mathbf{r}\right)^{4/3}}\]
-
shannon_information
¶ Shannon information defined as \(\rho(r) \ln \rho(r)\).