class chemtools.denstools.densbased.DensGradTool(dens, grad)[source]

Local descriptive tools based on density & gradient.

Initialize class.

Parameters: dens (np.ndarray) – Electron density evaluated on a set of grid points, $$\rho(\mathbf{r})$$. grad (np.ndarray) – Gradient vector of electron density evaluated on a set of grid points, $$\nabla \rho(\mathbf{r})$$.
gradient

Gradient of electron density $$\nabla \rho\left(\mathbf{r}\right)$$.

This is the first-order partial derivatives of electron density w.r.t. coordinate $$\mathbf{r} = \left(x\mathbf{i}, y\mathbf{j}, z\mathbf{k}\right)$$,

$\nabla\rho\left(\mathbf{r}\right) = \left(\frac{\partial}{\partial x}\mathbf{i}, \frac{\partial}{\partial y}\mathbf{j}, \frac{\partial}{\partial z}\mathbf{k}\right) \rho\left(\mathbf{r}\right)$
gradient_norm

Norm of the gradient of electron density.

$\lvert \nabla \rho\left(\mathbf{r}\right) \rvert = \sqrt{ \left(\frac{\partial\rho\left(\mathbf{r}\right)}{\partial x}\right)^2 + \left(\frac{\partial\rho\left(\mathbf{r}\right)}{\partial y}\right)^2 + \left(\frac{\partial\rho\left(\mathbf{r}\right)}{\partial z}\right)^2 }$
reduced_density_gradient

$s\left(\mathbf{r}\right) = \frac{1}{2\left(3\pi ^2 \right)^{1/3}} \frac{\lvert \nabla\rho\left(\mathbf{r}\right) \rvert}{\rho\left(\mathbf{r}\right)^{4/3}}$
ked_weizsacker

Weizsacker kinetic energy density.

$\tau_\text{W} \left(\mathbf{r}\right) = \tfrac{1}{8} \frac{\lvert \nabla\rho\left(\mathbf{r}\right) \rvert^2}{\rho\left(\mathbf{r}\right)}$
density

Electron density $$\rho\left(\mathbf{r}\right)$$.

ked_thomas_fermi

Thomas-Fermi kinetic energy density.

$\tau_\text{TF} \left(\mathbf{r}\right) = \tfrac{3}{10} \left(6 \pi^2 \right)^{2/3} \left(\frac{\rho\left(\mathbf{r}\right)}{2}\right)^{5/3}$
shannon_information

Shannon information defined as $$\rho(r) \ln \rho(r)$$.