chemtools.topology.point.EigenValueTool¶
-
class
chemtools.topology.point.
EigenValueTool
(eigenvalues, eps=1e-15)[source]¶ Class of descriptive tools based on eigenvalues.
Initialize class.
Parameters: - eigenvalues (np.ndarray(N, 3)) – A 2-D array recording the eigenvalues at each \(N\) point.
- eps (float, optional) – The error bound for being a zero eigenvalue.
-
eigenvalues
¶ Eigenvalues.
-
ellipticity
¶ Ellipticity.
\[\frac{\lambda_\text{min}}{\lambda_\text{min-1}} - 1\]
-
bond_descriptor
¶ Bond descriptor which is the ratio of average of positive and negative eigenvalues.
\[\frac{\left(\frac{\sum_{\lambda_k > 0} \lambda_k}{\sum_{\lambda_k > 0} 1}\right)} {\left(\frac{\sum_{\lambda_k < 0} \lambda_k}{\sum_{\lambda_k < 0} 1}\right)}\]
-
eccentricity
¶ Eccentricity (essentially the condition number).
\[\sqrt{\frac{\lambda_\text{max}}{\lambda_\text{min}}}\]
-
index
¶ Index which is the number of negative-curvature directions.
\[\sum_{\lambda_k < 0} 1\]
-
rank
¶ Rank which is the number of positive eigenvalues.
\[\sum_{\lambda_i > 0} 1\]
-
signature
¶ Signature which is the difference of number of positive & negative eigenvalues.
\[\sum_{\lambda_k > 0.} 1 - \sum_{\lambda_k < 0.} 1\]
-
morse
¶ Rank and signature.
\[\left(\sum_{\lambda_k > 0} 1, \sum_{\lambda_k > 0.}1 - \sum_{\lambda_k < 0.} 1\right)\]A system is degenerate if it has a zero eigenvalue and consequently, it’s critical point is said to be “catastrophe”. It returns a warning in this case.